

كلية هندسة الحاسوب والمعلوماتية والاتصالات

Faculty of Computer & Informatics and Communications Engineering

Logic Circuits Dr. Eng. Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy,

istamo48@mail.ru

Hexadecimal and Octal Numbers

4-1. Hexadecimal Numbers			
Hexadecimal uses sixteen characters to represent	Decimal	Hexadecimal	Binary
numbers: the numbers 0 through 9 and the alphabetic		0	0000
characters A through F.		1	0001
• The hexadecimal number system has a base of sixteen:	2	2	0010
	3	3	0011
	4	4	0100
Binary-to- Hexadecimal conversion	5	5	0101
	6	6	0110
	7	7	0111
Large binary number can easily be converted to	8	8	1000
hexadecimal by grouping 4 bits at a time and writing the	9	9	1001
equivalent hexadecimal character	10	А	1010
equivalent nexadecennar character.	11	В	1011
	12	С	1100
	13	D	1101
EXAMPLE J-14 Express 1001011000001110_{2} in	14	Е	1110
hexadecimal:	15	F	1111
nexadeennar.			
Group the binary number by 4-bits starting from			
the right. Thus, 960E			

6

Hexadecimal-to- Binary conversion

	Decimal	Hexadecimal	Binary
☐ To convert from a hexadecimal number, revers process	0	0	0000
and replace each hexadecimal symbol with the	1	1	0001
appropriate hits	2	2	0010
appropriate oits.	3	3	0011
Evennie 2.15 Determine the him was the first of the	4	4	0100
LAGINATION Determine the binary numbers for the	5	5	0101
following hexadecimal numbers:	6	6	0110
	7	7	0111
(a) $10A4_{16}$ (b) $CF8E_{16}$ (c) $9/42_{16}$	8	8	1000
	9	9	1001
	10	А	1010
(a) 1 0 A 4 (b) C F 8 E (c) 9 7 4 2	11	В	1011
	12	С	1100
1000010100100 1100111110001110 1001011101000010	13	D	1101
	14	E	1110
	15	F	11111

In part (a), the MSD is understood to have three zeros preceding it, thus forming a 4-bit group.

Hexadecimal-to- Decimal conversion

- **<u>One way</u>**: first convert the hexadecimal number to binary and then convert from binary to decimal.
- Another way: Hexadecimal is a weighted number system. The column weights are powers of 16, which increase from right to left.

Decimal

0

2

Hexadecimal

0

2

Binary

0000

0001

0010

Decimal-to-Hexadecimal conversion **Example 3-17**

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadecimal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits A through F are equivalent to decimal numbers 10 through 15.

Hexadecimal Subtraction

- The 2's complement allows you to subtract by adding binary numbers.
- Since a hexadecimal number can be used to represent a binary number, it can be used to represent the 2's complement of binary number.

4-2. Octal Numbers

- Octal uses eight numbers, which are 0 through 7, to represent numbers. There is no 8 or 9 character in octal.
- To count above 7, begin another column and start over:
 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
 - For instance, 15_8 in octal is equivalent to 13_{10} in decimal and D in hexadecimal.

\sim		
Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

Octal-to-Decimal Conversion

Example 3-20

Octal is also a weighted number system. The column weights are powers of 8, which increase from right to left.

Express 3702₈ and 2374₈ in decimal.

Start by writing the column weights:

Solution Solution Solution $3 7 0 2_8$ Weight: $8^3 8^2 8^1 8^0$ Octal number: 2 3 7 4 $2374_8 = (2 \times 8^3) + (3 \times 8^2) + (7 \times 8^1) + (4 \times 8^0)$ $= (2 \times 512) + (3 \times 64) + (7 \times 8) + (4 \times 1)$ $= 1024 + 192 + 56 + 4 = 1276_{10}$

 $3(512) + 7(64) + 0(8) + 2(1) = 1986_{10}$

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-by-8 method.

Decimal

Octal

0

Binary

0000

Octal-to-Binary Conversion

To convert an octal number to a binary number, simply replace each octal digit with the appropriate three bits.

Octal Digit	0	1	2	3	4	5	6	7
Binary	000	001	010	011	100	101	110	111
vomnle	0 01					$\langle \rangle$		
Xalliji	5 J-Z I						•	
_	Con	vert ea	ch of	the fol	lowing	octal	numbe	ers to
	bina	rv						
		رم) (م)	13.	(h) 25		140	(d)	7526-
Colutio	n	(a)	1.78	(0) 25	8 (0)	1408	(u)	15208
JULULU								
(a) 1	3	љ 2	5	(a) 1	4 0		7 5	2 6
(a) 1		(0) 2		(c) 1	40	(u)		
		0101						
UU	1011	0101	01	0011	00000		1111010	10110

	Decimal	Octal	Binary
Binamy to Octal Conversion	0	0	0000
Dinary-10-Octai Conversion		1	0001
Binary number can easily be converted to octal by	2)	2	0010
	3	3	0011
grouping 3 bits at a time and writing the equivalent octal	4	4	0100
abaractor for anab group	5	5	0101
character for each group.	6	6	0110
	7	7	0111
EXAMPLE 5 -ZZ Express 1 001 011 000 001 110_2 in octal:	8	10	1000
	9	11	1001
Colution Group the binary number by 3-bits starting from	10	12	1010
the right Thus 113016	11	13	1011
the fight. Thus, 115010 ₈	12	14	1100
(a) 110101 (b) 101111001	13	15	1101
	14	16	1110
6 5 = 65, $5 7 1 = 571$,	15	17	1111
(c) 100110011010 $\downarrow \downarrow \downarrow \downarrow \downarrow$ (d) 011010000100 $\downarrow \downarrow \downarrow \downarrow \downarrow$			
4 6 3 $2 = 4632_8$ 3 2 0 4 = 3204 ₈			

4-3. Binary coded decimal (عشري مرمز ثنائياً)

- Binary coded decimal (BCD) is a weighted code that is commonly used in digital systems when it is necessary to show decimal numbers such as in clock displays.
- □ The table illustrates the difference between straight binary and BCD.
 - BCD represents each decimal digit with a 4-bit code.
 - Notice that the codes 1010 through 1111 are not used in BCD.

The 8421 cod

The 8421 code is a type of BCD code. BCD means that each decimal digit, 0 through 9, is represented by a binary code of four bits.

The designation 8421 indicates the binary weights of the four bits $(2^3, 2^2, 2^1, 2^0)$

Decimal Digit	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

	Decimal	Binary	BCD
	0	0000	0000
	C	0001	0001
	2	0010	0010
	3	0011	0011
	4	0100	0100
	5	0101	0101
	6	0110	0110
	7	0111	0111
	8	1000	1000
	9	1001	1001
•	→ 10	1010	00010000
	11	1011	00010001
	12	1100	00010010
l	13	1101	00010011
2	14	1110	00010100
-	15	1111	00010101

(الرمازات الرقمية) Gray code (رماز غراي)

- Gray code is an unweighted code that has a single bit change between one code word and the next in a sequence.
- Gray code is used to avoid problems in systems where an error can occur if more than one bit changes at a time.
- Like binary numbers, the Gray code can have any number of bits.
- Notice the single-bit change between successive (المتتالية/بالتسلسل) Gray code words.
 - For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to 0110, while the binary code changes from 0011 to 0100, a change of three bits.

Decimal	Binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Binary-to-Gray code Conversation

The following rules explain how to convert from a binary number to a Gray code word:

- 1. The most significant bit (MSB = left-most) in Gray code is the same as the corresponding MSB in the binary number.
- Going from left to right, add each adjacent pair (زوج متجاور) of binary code to get the next Gray code bit.
- 3. Discard carries.

Gray-to-Binary code Conversation

The following rules explain how to convert from a binary number to a Gray code word:

- 1. The most significant bit (MSB = left-most) in binary code is the same as the corresponding MSB in the Gray code.
- 2. Add each binary code bit generated to the Gray code bit in the next adjacent position (الموقع المجاور).
- 3. Discard carries.

Example 3-25

Convert the Gray codes 11011 and 10101111 to binary number.

Solution $\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}$ $\begin{array}{c} 1 \\ 0 \\ 0$ 1 $\begin{array}{c} 1 \\ 0$ 1

<u>Alphanumeric code</u>

- The alphanumeric codes (رموز أبجدية عددية) are codes that represented numbers and alphabetic letters and symbols.
- At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of alphabet, for a total of 36 items.
- □ This number requires six bits in each code combination because five bits are insufficient $(2^5=32)$.
- □ The ASCII is the most common alphanumeric code.

ASCII: American Standard Code for Information Interchange (الرماز الأمريكي القياسي لتبادل المعلومات)

- □ ASCII is a code for alphanumeric characters and control characters. In its original form, ASCII encoded 128 characters and symbols using 7-bits.
- □ The first 32 characters are control characters, that are based on obsolete teletype requirements, so these characters are generally assigned to other functions in modern usage.
- □ In 1981, IBM introduced extended ASCII, which is an 8-bit code and increased the character set to 256.
- □ Other extended sets (such as Unicode) have been introduced to handle characters in languages other than English (Asian).

American Standard Code for Information Interchange (ASCII).

	Control	Characters							Graphi	c Symbols					
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40		96	1100000	60
SOH	1	0000001	01	1	33	0100001	21	A	65	1000001	41	а	97	1100001	61
STX	2	0000010	02	"	34	0100010	22	В	66	1000010	42	b	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	C	67	1000011	43	с	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	E	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A	*	42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A
VT	11	0001011	0 B	+	43	0101011	2B	K	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	0D	-	45	0101101	2D	M	77	1001101	4D	m	109	1101101	6D
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	/	47	0101111	2F	0	79	1001111	4F	0	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	Р	80	1010000	50	р	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	s	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	Т	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	х	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	У	121	1111001	79
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	Z	122	1111010	7A
ESC	27	0011011	1 B		59	0111011	3B	[91	1011011	5B	{	123	1111011	7B
FS	28	0011100	1C	<	60	0111100	3C	Λ	92	1011100	5C	I	124	1111100	7C
GS	29	0011101	ID	=	61	0111101	3D]	93	1011101	5D	}	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	-	95	1011111	5F	Del	127	1111111	7F

Extended ASCII Characters

The extended ASCII characters are represented by an 8-bit code series from hexadecimal 80 to hexadecimal FF and can be grouped into the following general categories:

- Foreign (non-English) alphabetic characters (الأحرف/الرموز الأبجدية الأجنبية عير)
- Foreign currency symbols (رموز العملات الأجنبية),
- Greek letters (الأحرف اليونانية),
- Mathematical symbols (الرموز الرياضية),
- Drawing characters (رموز الرسم),
- Bar graphing characters (رموز مخططات الأعمدة),
- and shading characters (رموز التظليل).

Unicode

- Unicode provides the ability to encode (ترميز) all of the characters used for the written languages of the world by assigning (تخصيص=تعيين) each character a unique numeric value and name utilizing (الاستخدام) the universal character set (UCS).
 - It is applicable (قابل للتطبيق) in computer applications dealing (تتعامل) with multi-lingual text, mathematical symbols, or other technical characters.

□ Unicode consists of a number of related items (عناصر ذات صلة), such as:

- character properties, (خصائص الرموز/ الأحرف)
- ✓ rules for text normalization, (قواعد تنضيد النص)
- decomposition, collation, (التفكيك والترتيب = التصفيف)
- bidirectional display order (ترتيب العرض ثنائي الاتجاه) (for the correct display of text containing both right-to-left scripts (مخطوطات), such as Arabic or Hebrew, and left-to-right scripts).

Selected Key Terms

Alphanumeric	Consisting of numerals, letters, and other characters.
ASCII	American Standard Code for Information Interchange; the most widely used alphanumeric code.
BCD	Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9, is represented by a group of four bits.
Byte	A group of eight bits.
Hexadecimal	Describes a number system with a base of 16.
LSB	Least significant bit; the right-most bit in a binary whole number or code.
MSB	Most significant bit; the left-most bit in a binary whole number or code.
Octal	Describes a number system with a base of eight.

True/False Quiz

- 1. The octal number system is a weighted system with eight digits.
- 2. The binary number system is a weighted system with two digits.
- 3. MSB stands for most significant bit.
- **4.** In hexadecimal, 9 + 1 = 10.
- 5. The 1's complement of the binary number 1010 is 0101.
- 6. The 2's complement of the binary number 1111 is 0000.
- 7. The right-most bit in a signed binary number is the sign bit.
- 8. The hexadecimal number system has 16 characters, six of which are alphabetic characters.
- 9. BCD stands for binary coded decimal.
- 10. An error in a given code can be detected by verifying the parity bit.

1. T 2. T 3. T 4. F 5. T 6. F 7. F 8. T 9. T 10. T

SELF-TEST

1 2 × 10	4×10^{0} :-					
$1.3 \times 10^{-4} +$	4×10^{-15}	(-) 24	(4) 240			
(a) 0.54	(D) 3.4	(c) 34	(d) 340			
The decima	l equivalent of	1000 is				
(a) 2	(b) 4	(c) 6	(d) 8			
3. The binary	number 110111	01 is equal to	the decimal num	ıber		
(a) 121	(b) 221	(c) 441	(d) 256			
4. The decima	l number 21 is	equivalent to t	he binary numbe	r		
(a) 10101	(b) 10001	(c) 10000	(d) 11111			
5. The decima	l number 250 is	equivalent to	the binary numb	ber		
(a) 111110	10 (b) 11	10110	(c) 11111000	(d) 11111011		
6 The sum of	1111 + 1111 i	hinary equal				
(a) 0000	(b) 2222	(c) 11110	(d) 11111			
(1) 0000	(0) 2222		(u)			
7. The differen	nce of $1000 - 1$	00 equals				
(a) 100	(b) 101	(c) 110	(d) 111			
8. The 1's con	nplement of 111	10000 is				
(a) 111111	11 (b) 11	11110	(c) 00001111	(d) 10000001		
9. The 2's con	aplement of 110	01100 is				
(a) 001100	(b) 001	10100	(c) 00110101	(d) 00110110		
1. (c) 2. (d) 3. (b)	4. (a)	5. (a) 6.	(c) 7. (a)	8. (c)	9. (b)
			n e		2.4	~ /

SELF-TEST

- 10. The decimal number +122 is expressed in the 2's complement form as
 (a) 01111010
 (b) 11111010
 (c) 01000101
 (d) 10000101
- 11. The decimal number -34 is expressed in the 2's complement form as
 (a) 01011110
 (b) 10100010
 (c) 11011110
 (d) 01011101
- 12. A single-precision floating-point binary number has a total of
 (a) 8 bits
 (b) 16 bits
 (c) 24 bits
 (d) 32 bits
- **13.** In the 2's complement form, the binary number 10010011 is equal to the decimal number (a) -19 (b) +109 (c) +91 (d) -109
- 14. The binary number 101100111001010100001 can be written in octal as
 (a) 5471230₈
 (b) 5471241₈
 (c) 2634521₈
 (d) 23162501₈
- **15.** The binary number 10001101010001101111 can be written in hexadecimal as (a) $AD467_{16}$ (b) $8C46F_{16}$ (c) $8D46F_{16}$ (d) $AE46F_{16}$
- 16. The binary number for $F7A9_{16}$ is
 - (a) 1111011110101001 (b) 1110111110101001
 - (c) 1111111010110001 (d) 1111011010101001
- 17. The BCD number for decimal 473 is

11. (c)

(a) 111011010 (b) 110001110011 (c) 010001110011 (d) 010011110011

12. (d) **13.** (d) **14.** (b) **15.** (c)

10. (a)

Dr. Eng. Hassan Ahmad 3 July 2018

16. (a)

17. (c)

Prob. 2-1 Sol.

Problems & Solutions

What is the weight of 6 in each of the following decimal numbers? (a) 1386; (b) 54.692; (c) 671.920

- (a) $1386 = 1 \times 10^3 + 3 \times 10^2 + 8 \times 10^1 + 6 \times 10^0$ = $1 \times 1000 + 3 \times 100 + 8 \times 10 + 6 \times 1$ The digit 6 has a weight of $10^0 = 1$
- (b) $54,692 = 5 \times 10^4 + 4 \times 10^3 + 6 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$ = $5 \times 10,000 + 4 \times 1000 + 6 \times 100 + 9 \times 10 + 2 \times 1$ The digit 6 has a weight of $10^2 = 100$
- (c) $671,920 = 6 \times 10^5 + 7 \times 10^4 + 1 \times 10^3 + 9 \times 10^2 + 2 \times 10^1 + 0 \times 10^0$ = $6 \times 100,000 + 7 \times 10,000 + 1 \times 1000 + 9 \times 100 + 2 \times 10 + 0 \times 1$ The digit 6 has a weight of $10^5 = 100,000$

Prob. 2-2 Sol.

(a) 471; (b) 9356; (c) 125.000 (a) 471 = $4 \times 10^2 + 7 \times 10^1 + 1 \times 10^0$ = $4 \times 100 + 7 \times 10 + 1 \times 1$ = 400 + 70 + 1(b) 9,356 = $9 \times 10^3 + 3 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$ = $9 \times 1000 + 3 \times 100 + 5 \times 10 + 6 \times 1$ = 9,000 + 300 + 50 + 6

Give the value of each digit in the following decimal numbers:

(c) $125,000 = 1 \times 10^5 + 2 \times 10^4 + 5 \times 10^3$ = $1 \times 100,000 + 2 \times 10,000 + 5 \times 1000$ = 100,000 + 20,000 + 5,000

Dr. Eng. Hassan Ahmad 3 July 2018

Prop. 2-5 What is the highest decimal number that can be represented by each of the following numbers of binary digits (bits)?

(a) two; (b) three; (c) four; (d) five; (e) six; (f) seven; (g) eight; (h) nine; (i) ten; (j) eleven. 50 (a) $2^2 - 1 = 3$ (b) (c) $2^4 - 1 = 15$ (d) (e) $2^6 - 1 = 63$ (f) (g) $2^8 - 1 = 255$ 2⁹ (h) 1 = 511(i) $2^{10} - 1 = 1023$ 2^{11} 1 = 2047(i)

Prop. 2-6 Convert each decimal number to binary using repeated division by 2: (a) 15; (b) 21; (c) 28;

(a)
$$\frac{15}{2} = 7, R = 1(LSB)$$
 (b) $\frac{21}{2} = 10, R = 1(LSB)$ (c) $\frac{28}{2} = 14, R = 0(LSB)$
 $\frac{7}{2} = 3, R = 1$ $\frac{10}{2} = 5, R = 0$ $\frac{14}{2} = 7, R = 0$
 $\frac{3}{2} = 1, R = 1$ $\frac{5}{2} = 2, R = 1$ $\frac{7}{2} = 3, R = 1$
 $\frac{1}{2} = 0, R = 1(MSB)$ $\frac{2}{2} = 1, R = 0$ $\frac{3}{2} = 1, R = 1$
 $\frac{1}{2} = 0, R = 1(MSB)$ $\frac{1}{2} = 0, R = 1(MSB)$ $\frac{1}{2} = 0, R = 1(MSB)$

SOL

Dr. Eng. Hassan Ahmad 3 July 2018

Prob. 2-10	Divide the binary numbers as indicated:
	(a) $100 \div 10$ (b) $1001 \div 11$ (c) $1100 \div 100$
Sol .	(a) $\frac{100}{10} = 010$ (b) $\frac{1001}{0011} = 0011$ (c) $\frac{1100}{0100} = 0011$
*******	***************************************
Prob. 2-11	Determine the 1's complement of each binary number:
Sol.	(a) 101 (b) 110 (c) 1010 (d) 11010111 (e) 1110101 (f) 00001
	(a) The 1's complement of 101 is 010.
	(b) The 1's complement of 110 is 001.
	(c) The 1's complement of 1010 is 0101.
	(d) The 1's complement of 11010111 is 00101000.
	(e) The 1's complement of 1110101 is 0001010.
	(f) The 1's complement of 00001 is 11110.

Prob. 2-16	Co	nvert each pai	r of decim	al numbers t	to binary and add	using the 2's
complex	ment	form: (a) 33 a	nd 15 (b)	56 and -27	(c) -46 and 25 (d) -110 and -84
Sol.	(a)	33 = 00100001 15 = 00001111	$00100001 \\ + 00001111 \\ 00110000$	(b)	56 = 00111000 $27 = 00011011$ $-27 = 11100101$	$00111000 \\ + 11100101 \\ 00011101$
	(c)	46 = 00101110 $-46 = 11010010$ $25 = 00011001$	$ \begin{array}{r} 11010010 \\ + 00011001 \\ 11101011 \end{array} $	(d)	$110_{10} = 01101110$ -110_{10} = 10010010 84 = 01010100	$\frac{10010010}{+\ 10101100}\\100111110$
***** Prob. 2-17	**** Pe	**************************************	********* dition in th	********** e 2's compl	-84 = 10101100 ******************************	****

(a) 00010110 + 00110011 (b) 01110000 + 10101111

00010110 <u>+ 00110011</u> 01001001

(a)

Sol.

(b) 01110000 $\frac{+10101111}{100011111}$

Prob. 2-19

Convert each binary number to hexadecimal:

(a)	1110	(b) 10	(c) 10111
(d)	10100110	(e) 1111110000	(f) 100110000010

- (a) $1110 = E_{16}$
- (b) $10 = 2_{16}$
- (c) $0001\ 0111 = 17_{16}$
- (d) $1010\ 0110 = A6_{16}$
- (e) $0011\ 1111\ 0000 = 3F0_{16}$
- (f) $1001\ 1000\ 0010 = 982_{16}$

Prob. 2-20 Sol.

Convert each hexadecimal number to decimal:

(a) 23_{16} (b) 92_{16} (c) $1A_{16}$ (d) $8D_{16}$ (e) $F3_{16}$ (f) EB_{16} (g) $5C2_{16}$ (h) 700_{16}

(a)
$$23_{16} = 2 \times 16^{1} + 3 \times 16^{0} = 32 + 3 = 35$$

(b) $92_{16} = 9 \times 16^{1} + 2 \times 16^{0} = 144 + 2 = 146$
(c) $1A_{16} = 1 \times 16^{1} + 10 \times 16^{0} = 16 + 10 = 26$
(d) $8D_{16} = 8 \times 16^{1} + 13 \times 16^{0} = 128 + 13 = 141$
(e) $F3_{16} = 15 \times 16^{1} + 3 \times 16^{0} = 240 + 3 = 243$
(f) $EB_{16} = 14 \times 16^{1} + 11 \times 16^{0} = 224 + 11 = 235$
(g) $5C2_{16} = 5 \times 16^{2} + 12 \times 16^{1} + 2 \times 16^{0} = 1280 + 192 + 2 = 1474$
(h) $700_{16} = 7 \times 16^{2} = 1792$

Perform the following subtractions:

(a) $51_{16} - 40_{16}$ (b) $C8_{16} - 3A_{16}$ (c) $FD_{16} - 88_{16}$

Sol.

- (a) $51_{16} 40_{16} = 11_{16}$
- (b) $C8_{16} 3A_{16} = 8E_{16}$
- (c) $FD_{16} 88_{16} = 75_{16}$

Convert each octal number to decimal:

(a) 12_8 (b) 27_8 (c) 56_8 (d) 64_8

Sol.

Prop. Z

(a) $12_8 = 1 \times 8^1 + 2 \times 8^0 = 8 + 2 = 10$ (b) $27_8 = 2 \times 8^1 + 7 \times 8^0 = 16 + 7 = 23$ (c) $56_8 = 5 \times 8^1 + 6 \times 8^0 = 40 + 6 = 46$ (d) $64_8 = 6 \times 8^1 + 4 \times 8^0 = 48 + 4 = 52$ Prob. 2-25 Convert each decimal number to octal by repeated division by 8: (a) 15 (b) 27 (c) 46 (d) 70 🕻 $\frac{27}{2}$ = 3, remainder = 3 (LSD) (a) $\frac{15}{2} = 1$, remainder = 7 (LSD) (b) 8 $\frac{1}{8} = 0$, remainder =1 = 0, remainder = 3 octal number = 17_8 octal number $= 33_8$ (c) $\frac{46}{8} = 5$, remainder = 6 (LSD) $\frac{70}{2} = 8$, remainder = 6 (LSD) (d) $\frac{5}{2} = 0$, remainder = 5 $\frac{8}{2} = 1$, remainder = 0 octal number = 56_8 $\frac{1}{8} = 0$, remainder = 1 octal number = 106_8

Pro **Z-Z** Convert each octal number into binary: **(b)** 57_8 **(c)** 101_8 **(d)** 321_8 **(a)** 13₈ Sol. (a) $13_8 = 001 \ 011$ (b) $57_8 = 101\ 111$ (c) $101_8 = 001\ 000\ 001$ (d) $321_8 = 011\ 010\ 001$

Sol.

