كـــــــــة هندسة الـحاسوب و المعلوماتية والاتصالات Faculty of Computer \& Informatics and Communications Engineering

Logic Circuits
 Dr. Eng.
 Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter_ 2 Number systems, operations and codes

Hexadecimal and Octal Numbers

4-1. Hexadecimal Numbers

- Hexadecimal uses sixteen characters to represent numbers: the numbers 0 through 9 and the alphabetic characters A through F.
- The hexadecimal number system has a base of sixteen;

Binary-to- Hexadecimal conversion

Large binary number can easily be converted to hexadecimal by grouping 4 bits at a time and writing the equivalent hexadecimal character.

Sxample3

 1001011000001110_{2} in hexadecimal:| | | |
| :---: | :---: | :---: |
| Decimal | Hexadecimal | Binary |
| 0 | 0 | 0000 |
| 1 | 1 | 0001 |
| 2 | 2 | 0010 |
| 3 | 3 | 0011 |
| 4 | 4 | 0100 |
| 5 | 5 | 0101 |
| 6 | 6 | 0110 |
| 7 | 7 | 0111 |
| 8 | 8 | 1000 |
| 9 | 9 | 1001 |
| 10 | A | 1010 |
| 11 | B | 1011 |
| 12 | C | 1100 |
| 13 | D | 1101 |
| 14 | E | 1110 |
| 15 | F | 1111 |

Group the binary number by 4-bits starting from the right. Thus, 960E

Hexadecimal-to- Binary conversion

To convert from a hexadecimal number, revers process and replace each hexadecimal symbol with the appropriate bits.

yAllilejor Determine the binary numbers for the

 following hexadecimal numbers:(a) $10 \mathrm{~A}_{16}$
(b) $\mathrm{CF}_{8} \mathrm{E}_{16}$
(c) 9742_{16}

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

In part (a), the MSD is understood to have three zeros preceding it, thus forming a 4-bit group.

Hexadecimal-to- Decimal conversion

\square One way: first convert the hexadecimal number to binary and then convert from binary to decimal.
\square Another way: Hexadecimal is a weighted number system. The column weights are powers of 16 , which increase from right to left.

Example 3-16

Column weights $\left\{\begin{array}{rlll}16^{3} & 16^{2} & 16^{1} & 16^{0} \\ 4096 & 256 & 16 & 1 .\end{array}\right.$

1) Convert the following hexadecimal number to decimal:
(a) $1 C_{16}$
(b) $\mathrm{A} 85_{16}$
(a)

(b)

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

2) Express $\mathbf{1 A}_{\mathbf{2}} \mathbf{F}_{16}$ in decimal.

Start by writing the column weights:

$$
1(4096)+10(256)+2(16)+15(1)=6703_{10}
$$

Decimal-to-Hexadecimal conversion

Convert the decimal number 650 to hexadecimal by repeated division by 16 .

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadecimal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits A through F are equivalent to decimal numbers 10 through 15.

Add the following hexadecimal numbers
(a) $23_{16}+16_{16}$
(b) $58_{16}+22_{16}$
(c) $2 \mathrm{~B}_{16}+84_{16}$
(d) $\mathrm{DF}_{16}+\mathrm{AC}_{16}$

(b) 58_{16} right column: $8_{16}+2_{16}=8_{10}+2_{10}=10_{10}=\mathrm{A}_{16}$ $\frac{+22_{16}}{7 \mathrm{~A}_{16}}$ left column: $5_{16}+2_{16}=5_{10}+2_{10}=7_{10}=7_{16}$
(c) $2 \mathrm{~B}_{16}$ right column: $\mathrm{B}_{16}+4_{16}=11_{10}+4_{10}=15_{10}=\mathrm{F}_{16}$ $+84_{16}$ left column: $2_{16}+8_{16}=2_{10}+8_{10}=10_{10}=A_{16}$
(d) DF_{16} right column: $\mathrm{F}_{16}+\mathrm{C}_{16}=15_{10}+12_{10}=27_{10}$

$$
\frac{+\mathrm{AC}_{16}}{18 \mathbf{B}_{16}}
$$

$$
\begin{array}{ll}
\text { left column: } & \mathrm{D}_{16}+\mathrm{A}_{16}+1_{10}=13_{10}+10_{10}+\mathrm{I}_{10}=24_{10} \\
& 24_{10}-16_{10}=8_{10}=8_{16} \text { with a } 1 \text { carry }
\end{array}
$$

Hexadecimal Subtraction

- The 2's complement allows you to subtract by adding binary numbers.
- Since a hexadecimal number can be used to represent a binary number, it can be used to represent the 2 's complement of binary number.

EAMIINRO-19

$$
84_{16}-2 A_{16}
$$

$$
2 \mathrm{~A}_{16}=00101010
$$

$$
2 \text { 's complement of } 2 \mathrm{~A}_{16}=11010110=\mathrm{D} 6_{16}
$$

$$
84_{16}
$$

$$
\frac{+\mathrm{D}_{16}}{} \quad \text { Add } .
$$

4-2. Octal Numbers

- Octal uses eight numbers, which are 0 through 7, to represent numbers. There is no 8 or 9 character in octal.
- To count above 7, begin another column and start over: $10,11,12,13,14,15,16,17,18,19,20,21, \ldots$.
- For instance, 15_{8} in octal is equivalent to 13_{10} in decimal and D in hexadecimal

Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

Octal-to-Decimal Conversion

Octal is also a weighted number system. The column weights are powers of 8 , which increase from right to left.

xamblation

Express 3702_{8} and 2374_{8} in decimal.
Start by writing the column weights:

$$
\begin{aligned}
& \text { Weight: } 8^{3} 8^{2} 8^{1} 8^{0} \\
& \text { Octal number: } 2374
\end{aligned} \quad \begin{aligned}
2374_{8} & =\left(2 \times 8^{3}\right)+\left(3 \times 8^{2}\right)+\left(7 \times 8^{1}\right)+\left(4 \times 8^{0}\right) \\
& =(2 \times 512)+(3 \times 64)+(7 \times 8)+(4 \times 1) \\
512648 \mathrm{~B} & =1024+192+56+4=1276_{10}+
\end{aligned}
$$

$$
\begin{array}{llll}
3 & 7 & 0 & 2_{8}
\end{array}
$$

$$
3(512)+7(64)+0(8)+2(1)=1986_{10}
$$

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-by-8 method.

Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

(a) $\overbrace{001011}^{\downarrow} \begin{array}{cc}1 & 3 \\ \downarrow \\ \downarrow\end{array}$
(b)

(c)

(d)

Binary-to-Octal Conversion

Binary number can easily be converted to octal by grouping 3 bits at a time and writing the equivalent octal character for each group.

Group the binary number by 3-bits starting from the right. Thus, 113016_{8}

(a) | 110101 |
| :--- |
| \downarrow |
| \downarrow |
| 6 |
| \downarrow |$=65_{8}$

(c) 100110011010

(b) 101111001
$5 \quad 7 \quad 1=571_{8}$

Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

(d) $\begin{gathered}011010000100 \\ \downarrow \\ \downarrow \\ \downarrow\end{gathered}$
$320 \quad 4=\mathbf{3 2 0 4}_{8}$

4-3. Binary coded decimal (عشري مرمّز ثنُائياً)

\square Binary coded decimal (BCD) is a weighted code that is commonly used in digital systems when it is necessary to show decimal numbers such as in clock displays.
The table illustrates the difference between straight

Decimal	Binary	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001
$\rightarrow 10$	1010	00010000
11	1011	00010001
12	1100	00010010
13	1101	00010011
14	1110	00010100
15	1111	00010101

The 8421 cod

The 8421 code is a type of BCD code. BCD means that each decimal digit, 0 through 9 , is represented by a binary code of four bits.
 The designation 8421 indicates the binary weights of the four bits $\left(2^{3}, 2^{2}, 2^{1}, 2^{0}\right)$

Decimal Digit	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

4-4. Digital codes (الرمازات الرقمية)

Gray code (رمـز غراي)
\square Gray code is an unweighted code that has a single bit change between one code word and the next in a sequence.
\square Gray code is used to avoid problems in systems where an error can occur if more than one bit changes at a time.
\square Like binary numbers, the Gray code can have any number of bits.
\square Notice the single-bit change between successive Gray code words.

- For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to $\mathbf{0 1 1 0}$, while the binary code changes from 0011 to 0100 , a change of three bits.

Decimal	Binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Binary-to-Gray code Conversation

The following rules explain how to convert from a binary number to a Gray code word:

1. The most significant bit (MSB $=$ left-most) in Gray code is the same as the corresponding MSB in the binary number.
2. Going from left to right, add each adjacent pair (زوج منجاور) of binary code to get the next Gray code bit.
3. Discard carries.

Convert the binary numbers 10110 and 11000110 to Gray code.

Gray-to-Binary code Conversation

The following rules explain how to convert from a binary number to a Gray code word:

1. The most significant bit $(\mathrm{MSB}=$ left-most $)$ in binary code is the same as the corresponding MSB in the Gray code.
2. Add each binary code bit generated to the Gray code bit in the next adjacent position (الموقع المجاور).
3. Discard carries.

Convert the Gray codes 11011 and 10101111 to binary number.

Alphanumeric code

\square The alphanumeric codes (رموز أبجدية عددية) are codes that represented numbers and alphabetic letters and symbols.
\square At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of alphabet, for a total of 36 items.
\square This number requires six bits in each code combination because five bits are insufficient $\left(2^{5}=32\right)$.
\square The ASCII is the most common alphanumeric code.
ASCII: American Standard Code for Information Interchange
(الرماز لالمرمبكي القياسي لتبادل المعلومات)
\square ASCII is a code for alphanumeric characters and control characters. In its original form, ASCII encoded 128 characters and symbols using 7-bits.
\square The first 32 characters are control characters, that are based on obsolete teletype requirements, so these characters are generally assigned to other functions in modern usage.
\square In 1981, IBM introduced extended ASCII, which is an 8-bit code and increased the character set to 256 .
\square Other extended sets (such as Unicode) have been introduced to handle eharacters in languages other than English (Asian).

American Standard Code for Information Interchange (ASCII).

Control Characters				Graphic Symbols											
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40		96	1100000	60
SOH	1	0000001	01	!	33	0100001	21	A	65	1000001	41		97	1100001	61
STX	2	0000010	02	"	34	0100010	22	B	66	1000010	42		98	1100010	62
ETX	3	0000011	03	\#	35	0100011	23	C	67	1000011	43		99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100		d	100	1100100	64
ENQ	5	0000101	05	\%	37	0100101	25	E	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	\&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111		g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	H	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0 A	*	42	0101010	2A	J	74	1001010	4 A	j	106	1101010	6 A
VT	11	0001011	0B	+	43	0101011	2B	K		1001011	4B	k	107	1101011	6 B
FF	12	0001100	0 C	,	44	0101100	2 C	L	76	1001100	4 C	1	108	1101100	6 C
CR	13	0001101	0D	-	45	0101101	2 D	M	77	1001101	4D	m	109	1101101	6 D
SO	14	0001110	0 E	-	46	0101110	2E		78	1001110	4E	n	110	1101110	6 E
SI	15	0001111	0F	1	47	0101111	2 F		79	1001111	4F	0	111	1101111	6 F
DLE	16	0010000	10	0	48	0110000	30		80	1010000	50	p	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31		81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52		114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	s	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	T	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	X	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	y	121	1111001	79
SUB	26	0011010	1 A		58	0111010	3 A	Z	90	1011010	5A	z	122	1111010	7 A
ESC	27	0011011	1B		59	0111011	3B	[91	1011011	5B	1	123	1111011	7 B
FS	28	0011100	1C		60	0111100	3 C	1	92	1011100	5C	I	124	1111100	7 C
GS	29	0011101	1D		61	0111101	3 D]	93	1011101	5D	1	125	1111101	7 D
RS	30	0011110	1 E	>	62	0111110	3 E	\wedge	94	1011110	5 E	\sim	126	1111110	7 E
US	31	0011111	1 F	?	63	0111111	3 F	-	95	1011111	5 F	Del	127	1111111	7 F

Extended ASCII Characters

The extended ASCII characters are represented by an 8 -bit code series from hexadecimal 80 to hexadecimal FF and can be grouped into the following general categories:

- Foreign (non-English) alphabetic characters الأحرف/الرموز الأبجدية الأجنية -غير) (الانكليزية),
- Foreign currency symbols (رمون العملات الأجنبية),
- Greek letters (الأحرف اليونانية),
- Mathematical symbols (اللاموز الرياضية),
- Drawing characters (رموز الرسر),
- Bar graphing characters (رموز مخططات الأعدة)),
- and shading characters (رموز التظلّل).

Unicode

\square Unicode provides the ability to encode (ترمبز) all of the characters used for the
 unique numeric value and name utilizing (الاستخدام) the universal character set (UCS).

- It is applicable (قابل للتطبيق) in computer applications dealing (نتعامل) with multi-lingual text, mathematical symbols, or other technical characters.
\square Unicode consists of a number of related items (عناصر ذات صلة), such as:
\checkmark character properties,(خصائص الرموز/ الأحرف)
\checkmark rules for text normalization, (قوا (عد تنضيد النص)
\checkmark decomposition, collation, (التنكيك والترتيب = التصفيف) (
\checkmark bidirectional display order (ترتيب العرض ثنائي الاتجاه) (for the correct display of text containing both right-to-left scripts (مخطوطات), such as Arabic or Hebrew, and left-to-right scripts).

Selected Key Terms

Alphanumeric	Consisting of numerals, letters, and other characters.			
ASCII	American Standard Code for Information Interchange; the most widely used alphanumeric code.			
$\boldsymbol{B C D}$	Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9, is represented by a group of four bits.			
Byte	A group of eight bits.	$.$	Hexadecimal	Describes a number system with a base of 16.
:---	:---			
LSB	Least significant bit; the right-most bit in a binary whole number or code. Most significant bit; the left-most bit in a binary whole number or code.			
MSB	Describes a number system with a base of eight.			
$\boldsymbol{O c t a l}$				

True/False Quiz

1. The octal number system is a weighted system with eight digits.
2. The binary number system is a weighted system with two digits.
3. MSB stands for most significant bit.
4. In hexadecimal, $9+1=10$.
5. The 1 's complement of the binary number 1010 is 0101 .
6. The 2 's complement of the binary number 1111 is 0000 .
7. The right-most bit in a signed binary number is the sign bit.
8. The hexadecimal number system has 16 characters, six of which are alphabetic characters.
9. BCD stands for binary coded decimal.
10. An error in a given code can be detected by verifying the parity bit.
11. T 2. T
12. T
13. F
14. T
15. F
16. F
17. T
18. T
19. T

SELF-TEST

1. $3 \times 10^{1}+4 \times 10^{0}$ is
(a) 0.34
(b) 3.4
(c) 34
(d) 340
2. The decimal equivalent of 1000 is
(a) 2
(b) 4
(c) 6
(d) 8
3. The binary number 11011101 is equal to the decimal number
(a) 121
(b) 221
(c) 441
(d) 256
4. The decimal number 21 is equivalent to the binary number
(a) 10101
(b) 10001
(c) 10000
(d) 11111
5. The decimal number 250 is equivalent to the binary number
(a) 11111010
(b) 11110110
(c) 11111000
(d) 11111011
6. The sum of $1111+1111$ in binary equals
(a) 0000
(b) 2222
(c) 11110
(d) 11111
7. The difference of $1000-100$ equals
(a) 100
(b) 101
(c) 110
(d) 111
8. The 1 's complement of 11110000 is
(a) 11111111
(b) 11111110
(c) 00001111
(d) 10000001
9. The 2 's complement of 11001100 is
(a) 00110011
(b) 00110100
(c) 00110101
(d) 00110110
10. (c)
11. (d)
12. (b)
13. (a)
14. (a)
15. (c)
16. (a)
17. (c) 9. (b)

SELF-TEST

10. The decimal number +122 is expressed in the 2 's complement form as
(a) 01111010
(b) 11111010
(c) 01000101
(d) 10000101
11. The decimal number -34 is expressed in the 2 's complement form as
(a) 01011110
(b) 10100010
(c) 11011110
(d) 01011101
12. A single-precision floating-point binary number has a total of
(a) 8 bits
(b) 16 bits
(c) 24 bits
(d) 32 bits
13. In the 2 's complement form, the binary number 10010011 is equal to the decimal number
(a) -19
(b) +109
(c) +91
(d) -109
14. The binary number 101100111001010100001 can be written in octal as
(a) 5471230_{8}
(b) 54712418
(c) 2634521_{8}
(d) 23162501_{8}
15. The binary number 10001101010001101111 can be written in hexadecimal as
(a) $\mathrm{AD} 467_{16}$
(b) 8 C 46 F
(c) $8 \mathrm{D} 46 \mathrm{~F}_{16}$
(d) $\mathrm{AE} 46 \mathrm{~F}_{16}$
16. The binary number for $F 7 \mathrm{~A} 9_{16}$ is
(a) 1111011110101001
(b) 1110111110101001
(c) 11111111010110001
(d) 1111011010101001
17. The BCD number for decimal 473 is
(a) 111011010
(b) 110001110011
(c) 010001110011
(d) 010011110011
18. (a)
19. (c)
20. (d) 13. (d)
21. (b)
22. (c)
23. (a)
24. (c)

Problems \& Solutions

What is the weight of 6 in each of the following decimal numbers?
(a) 1386;
(b) 54.692;
(c) 671.920
(a) $1386=1 \times 10^{3}+3 \times 10^{2}+8 \times 10^{1}+6 \times 10^{0}$

$$
=1 \times 1000+3 \times 100+8 \times 10+6 \times 1
$$

The digit 6 has a weight of $10^{0}=1$
(b) $54,692=5 \times 10^{4}+4 \times 10^{3}+6 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$

$$
=5 \times 10,000+4 \times 1000+6 \times 100+9 \times 10+2 \times 1
$$

The digit 6 has a weight of $10^{2}=100$
(c) $671,920=6 \times 10^{5}+7 \times 10^{4}+1 \times 10^{3}+9 \times 10^{2}+2 \times 10^{1}+0 \times 10^{0}$

$$
=6 \times 100,000+7 \times 10,000+1 \times 1000+9 \times 100+2 \times 10+0 \times 1
$$

The digit 6 has a weight of $10^{5}=100,000$

Give the value of each digit in the following decimal numbers:
(a) 471;
(b) 9356;
(c) 125.000
(a) $471=4 \times 10^{2}+7 \times 10^{1}+1 \times 10^{0}$

$$
\begin{aligned}
& =4 \times 100+7 \times 10+1 \times 1 \\
& =400+70+1
\end{aligned}
$$

$$
\begin{align*}
9,356 & =9 \times 10^{3}+3 \times 10^{2}+5 \times 10^{1}+6 \times 10^{0} \tag{b}\\
& =9 \times 1000+3 \times 100+5 \times 10+6 \times 1 \\
& =9,000+300+50+6
\end{align*}
$$

$$
\begin{align*}
125,000 & =1 \times 10^{5}+2 \times 10^{4}+5 \times 10^{3} \tag{c}\\
& =1 \times 100,000+2 \times 10,000+5 \times 1000 \\
& =100,000+20,000+5,000
\end{align*}
$$

Convert the following binary numbers to decimal:
(a) 11 ;
(b) 100 ;
(c) 111;
(d) 1000;
(e) 1001 ;
(f) 1100 ;
(g) 1011;
(h) 1111.
(a) $11=1 \times 2^{1}+1 \times 2^{0}=2+1=3$
(b) $100=1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=4$
(c) $111=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=4+2+1=7$
(d) $1000=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} \xlongequal{=}$
(e) $1001=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=8+1=9$
(f) $1100=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=8-4=12$
(g) $1011=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+4 \times 2^{0}=8+2+1=11$
(h) $1111=1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=8+4+2+1=15$

maniza
 Convert each binary number to decimal:
 (a) 110011.11;
 (b) 101010.01 ;
 (c) 1000001.111; (d) 1111000.101;

(a) $110011.11=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$

$$
=32+16+2+1+0.5+0.25=51.75
$$

(b) $101010.01=1 \times 2^{5}+1 \times 2^{3}+1 \times 2^{1}+1 \times 2^{-2}=32+8+2+0.25$

$$
=42.25
$$

(c) $1000001111=1 \times 2^{6}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}$

$$
=64+1+0.5+0.25+0.125=65.875
$$

(d) $1111000.101=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{-1}+1 \times 2^{-3}$

$$
=64+32+16+8+0.5+0.125=120.625
$$

What is the highest decimal number that can be represented by each of the following numbers of binary digits (bits)?
(a) two;
(b) three;
(c) four;
(d) five;
(e) six; (f) seven;
(g) eight; (h) nine;
(i) ten;
(j) eleven.
(a) $2^{2}-1=3$
(b) $\quad 2^{3}-1=7$
(c) $2^{4}-1=15$
(d) $2^{5}-1=31$
(e) $2^{6}-1=63$
(f) $\quad 2^{7}-1=127$
(g) $2^{8}-1=255$
(h) $\quad 2^{9}-1=511$
(i) $2^{10}-1=1023$
(j) $2^{11}-1=2047$

Convert each decimal number to binary using repeated division by 2 :
(a) 15 ; (b) 21 ;
(c) 28 ;
(a) $\begin{aligned} \frac{15}{2} & =7, R=1(\mathrm{LSB}) \\ \frac{7}{2} & =3, R=1 \\ \frac{3}{2} & =1, R=1 \\ \frac{1}{2} & =0, R=1(\mathrm{MSB})\end{aligned}$
$\begin{array}{rl}\frac{21}{2} & =10, \\ \frac{10}{2} & =5=1(\mathrm{LSB}) \\ \frac{5}{2} & =2, \\ \frac{2}{2} & =1, \\ \frac{1}{2} & =0 \\ 2 & R=1 \\ & R=0 \\ & \end{array}$
(c) $\frac{28}{2}=14, \quad R=0(\mathrm{LSB})$
$\frac{14}{2}=7, \quad R=0$
$\frac{7}{2}=3, \quad R=1$
$\frac{3}{2}=1, \quad R=1$
$\frac{1}{2}=0, \quad R=1(\mathrm{MSB})$

Add the binary numbers:
(a) $11+01$
(b) $10+10$
(c) $101+11$
(d) $111+110$
(e) $1001+101$
(f) $1101+1011$
(a) 11

$$
\frac{+01}{100}
$$

(b) 10
(c)
101

$$
\frac{+10}{100}
$$

$$
\frac{+011}{1000}
$$

(d)

$$
\begin{array}{r}
111 \\
+110 \\
\hline 1101
\end{array}
$$

(e)
$\begin{array}{r}1001 \\ +0101 \\ \hline 1110\end{array}$
(f) 1101

$$
\frac{+1011}{11000}
$$

**
Use direct subtraction on the following binary numbers:
(a) $11-1$
(b) $101-100$
(c) $110-101$
(d) $1110-11$
(e) $1100-1001$
(f) $11010-10111$
(a) 11
(b) 101
(c) 110
-100
001
(e) $\begin{array}{r}1100 \\ -1001 \\ \hline 0011\end{array}$
(f) $\begin{array}{r}11010 \\ -10111 \\ \hline 00011\end{array}$

Perform the following binary multiplications:
(a) 11×11
(b) 100×10
(c) 111×101
(d) 1001×110
(e) 1101×1101
(f) 1110×1101
(a) 11

$\frac{11}{\times 11}$
11
1001

(e) 1101

$\frac{1101}{1101}$
0000
1101
1101
10101001

(b) 100
$\begin{array}{r}\times 10 \\ \hline 000\end{array}$
$\frac{100}{1000}$
(f) 1110
$\begin{array}{r}\times 1101 \\ \hline 1110\end{array}$ 0000
1110
$\frac{1110}{10110110}$
(c)

(d)

1001 $\begin{array}{r}\times 110 \\ \hline 0000\end{array}$ 1001
1001

Divide the binary numbers as indicated:
(a) $100 \div 10$
(b) $1001 \div 11$
(c) $1100 \div 100$
(a) $\frac{100}{10}=010$
(b) $\frac{1001}{0011}=0011$
(c) $\frac{1100}{0100}=0011$
**
Determine the 1 's complement of each binary number:
(a) 101
(b) 110
(c) 1010
(d) 11010111
(e) 1110101
(f) 00001
(a) The 1 's complement of 101 is 010 .
(b) The 1 's complement of 110 is 001 .
(c) The 1 's complement of 1010 is 0101 .
(d) The 1 's complement of 11010111 is 00101000 .
(e) The 1's complement of 1110101 is 0001010 .
(f) The 1 's complement of 00001 is 11110 . method:

Determine the 2 's complement of each binary number using either
(a) 10
(b) 111
(c) 1001
(d) 1101
(e) 11100
(f) 10011
(g) 10110000
(h) 00111101

Take the 1 's complement and add 1 :
(a) $01+1=10$
(b) $000+1=001$
(c) $0110+1=0111$
(d) $0010+1=0011$
(e) $00011+1=00100$
(f) $01100+1=01101$
(g) $01001111+1=01010000$
(h) $11000010+1=11000011$
**
Prolo.2.13
number:
Express each decimal number in binary as an 8-bit sign-magnitude
(a) +29
(b) -85
(c) +100
(d) -123
(a) Magnitude of $29=0011101$

$$
+29=00011101
$$

(c) Magnitude of $100_{10}=1100100$
$+100=01100100$
(b) Magnitude of $85=1010101$ $-85=11010101$
(d) Magnitude of $123=1111011$ $-123=11111011$

Express each decimal number as an 8 -bit number in the 1 's complement form:
(a) -34
(b) +57
(c) -99
(d) +115
(a) Magnitude of $34=0100010$

$$
-34=11011101
$$

(b) Magnitude of $57=0111001$
$+57=00111001$
(c) Magnitude of $99=1100011$

$$
-99=10011100
$$

(d) Magnitude of $115=1110011$
$+115=01110011$

Express each decimal number as an 8-bit number in the 2 's complement form:
(a) +12
(b) -68
(c) +101
(d) -125
(a) Magnitude of $12=1100$ $+12=00001100$
(c) Magnitude of $101_{10}=1100101$ $+101_{10}=01100101$
(b) Magnitude of $68=1000100$ $-68=10111100$
(d) Magnitude of $125=1111101$ $-125=10000011$

Convert each pair of decimal numbers to binary and add using the 2 's complement form:
(a) 33 and 15
(b) 56 and -27
(c) -46 and $25 \bigcirc$ (d) -110 and -84
(a) $\quad \begin{aligned} 33 & =00100001 \\ 15 & =00001111\end{aligned} \begin{array}{r}00100001 \\ +00001111 \\ 00110000\end{array}$
(b)

56	$=00111000$	00111000
27	$=00011011$	+11100101
-27	$=11100101$	00011101

(c) $\begin{array}{rlr}46 & =00101110 & 11010010 \\ -46 & =11010010 & +00011001 \\ 25 & =00011001 & 11101011\end{array}$

$$
\text { (d) } \begin{array}{rlr}
110_{10} & =01101110 & 10010010 \\
-110_{10} & =10010010 & +10101100 \\
84 & =01010100 & 100111110 \\
-84 & =10101100 &
\end{array}
$$

**
Perform each addition in the 2's complement form:
$\begin{array}{ll}\text { (a) } 00010110+00110011 & \text { (b) } 01110000+10101111\end{array}$

(b) 01110000
$\begin{array}{r}+10101111 \\ \hline 100011111\end{array}$
(a) $00110011-00010000$
(b) $01100101-11101000$

(a) | 00110011 | 00110011 |
| ---: | ---: |
| -00010000 | |
| | +11110000 |
| $\bigwedge 00100011$ | |

(b) 01100101
01100101
$\underline{-1101000} \frac{+00011000}{0111101}$
**
MOL.2.19 Convert each hexadecimal number to binary:
(a) 38_{16}
(b) 59_{16}
(c) Al_{14}
(d) $5 \mathrm{C}_{16}$
(e) 4100_{16}
(f) $\mathrm{FB} 17_{16}$
(g) $8 \mathrm{~A} 9 \mathrm{D}_{16}$
(a) $38_{16}=00111000$
(b) $59_{16}=01011001$
(c) $\mathrm{A} 14_{16}=101000010100$
(d) $5 \mathrm{CB}_{16}=010111001000$
(e) $4100_{16}=0100000100000000$
(f) $\mathrm{FB} 17_{16}=1111101100010111$
(g) $8 \mathrm{~A}^{\left(9 D_{16}\right.}=1000101010011101$

Convert each binary number to hexadecimal:
(a) 1110
(b) 10
(c) 10111
(d) 10100110
(e) 1111110000
(f) 100110000010
(a) $1110=\mathrm{E}_{16}$
(b) $10=2_{16}$
(c) $00010111=17_{16}$
(d) $10100110=\mathrm{A}_{16}$
(e) $001111110000=3 \mathrm{FO}_{16}$
(f) $100110000010=982_{16}$
**
Convert each hexadecimal number to decimal:
(a) 23_{16}
(b) 92_{16}
(c) ${ }^{1} \mathrm{~A}_{16}$
(d) $8 \mathrm{D}_{16}$
(e) F_{16}
(f) EB_{16}
(g) $5 \mathrm{C}_{16}$
(h) 700_{16}
(a) $23_{16}=2 \times 16^{1}+3 \times 16^{0}=32+3=35$
(b) $92_{16}=9 \times 16^{1}+2 \times 16^{0}=144+2=146$
(c) $1 \mathrm{~A}_{16}=1 \times 16^{1}+10 \times 16^{0}=16+10=26$
(d) $8 \mathrm{D}_{16}=8 \times 16^{1}+13 \times 16^{0}=128+13=141$
(e) $\mathrm{F}_{16}=15 \times 16^{1}+3 \times 16^{0}=240+3=243$
(f) $\quad \mathrm{EB}_{16}=14 \times 16^{1}+11 \times 16^{0}=224+11=235$
(g) $5 \mathrm{C}_{16}=5 \times 16^{2}+12 \times 16^{1}+2 \times 16^{0}=1280+192+2=1474$
(h) $700_{16}=7 \times 16^{2}=1792$

Convert each decimal number to hexadecimal:
(a) 8
(b) 14
(c) 33
(d) 52
(a) $\frac{8}{16}=0$, remainder $=8$
hexadecimal number $=8_{16}$
(b) $\frac{14}{16}=0$, remainder $=14=\mathrm{E}_{16}$
hexadecimal number $=\mathrm{E}_{16}$
(c) $\frac{33}{16}=2$, remainder $=1(\mathrm{LSD})$
(d) $\frac{52}{16}=3$, remainder $=4($ LSD $)$
$\frac{2}{16}=0$, remainder $=2$
$\frac{3}{16}=0$, remainder $=3$
hexadecimal number $=21_{16}$
hexadecimal number $=34_{16}$
$* *$
Perform the following additions:
(a) $37_{16}+2916$
(b) $A 0_{16}+6 B_{16}$
(c) $\mathrm{FF}_{16}+\mathrm{BB}_{16}$
(a) $37_{16}+29_{16}=60_{16}$
(b) $\mathrm{A}_{16}+6 \mathrm{~B}_{16}=10 \mathrm{~B}_{16}$
(c) $\mathrm{FF}_{16}+\mathrm{BB}_{16}=1 \mathrm{BA}_{16}$

Perform the following subtractions:
(a) $51_{16}-40_{16}$
(b) $\mathrm{C8}_{16}-3 \mathrm{~A}_{16}$
(c) $\mathrm{FD}_{16}-88_{16}$
(a) $51_{16}-40_{16}=11_{16}$
(b) $\mathrm{C}_{16}-3 \mathrm{~A}_{16}=8 \mathrm{E}_{16}$
(c) $\mathrm{FD}_{16}-88_{16}=75_{16}$
**
Convert each octal number to decimal:
(a) 12_{8}
(b) 27_{8}
(C) 56_{8}
(d) 64_{8}
(a) $12_{8}=1 \times 8^{1}+2 \times 8^{0}=8+2=10$
(b) $27_{8}=2 \times 8^{1}+7 \times 8^{0}=16+7=23$
(c) $56_{8}=5 \times 8^{1}+6 \times 8^{0}=40+6=46$
(d) $64_{8}=6 \times 8^{1}+4 \times 8^{0}=48+4=52$

Convert each decimal number to octal by repeated division by 8 :
(a) 15
(b) 27
(c) 46
(d) 70
(a) $\frac{15}{8}=1$, remainder $=7($ LSD $)$
(b) $\frac{27}{8}=3$, remainder $=3$ (LSD)
$\frac{1}{8}=0$, remainder $=1$
octal number $=178$

$$
\begin{aligned}
& \frac{3}{8}=0, \text { remainder }=3 \\
& \text { octal number }=33_{8}
\end{aligned}
$$

(c) $\frac{46}{8}=5$, remainder $=6($ LSD $)$
(d) $\frac{70}{8}=8$, remainder $=6($ LSD $)$
$\frac{5}{8}=0$, remainder $=5$
octal number $=56_{8}$

**
Prol. 2.26 Convert each octal tumber into binary:
Sol.
(a) 13_{8}
(b) 57_{8}
(c) 101_{8}
(d) 321_{8}
(a) $13_{8}=001011$
(b) $57_{8}=101111$
(c) $101_{8}=001000001$
(d) $321_{8}=011010001$

Convert each binary number to Gray code:
(a) 11011
(b) 1001010
(c) 1111011101110
(a) $\begin{array}{llllll}1+1+0+1+1 & \text { Binary } \\ 1 & 0 & 1 & 1 & 0 & \text { Gray }\end{array}$
(c) $\begin{array}{llllllllllllll}1+1+1+1+0+1+1+1+0+1+1+1+0 & \text { Binary } \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \text { Gray }\end{array}$
(b) $1+0+0+1+0+1+0$ Binary
**
Convert each Gray code to binary
(a) 1010
(b) 00010
(c) 11000010001
(a) 1010
1100
Gray
Binary
(c) $\begin{array}{lll}11000010001 & \text { Gray } \\ 10000011110 & \text { Binary }\end{array}$
(b) 00010 Gray 00011 Binary

The end of Lecture_04, chapter 2

